A Three Battery Switching System - Free Energy Generator

Continuing the Tesla Switch style of operation, it is possible to get the same effect as the Tesla Switch circuit, using only three batteries (or three capacitors). Discussed almost a century ago by Carlos Benitez in his patents, and more recently described by John Bedini, just three batteries can be used if more complicated circuit switching is used. Carlos points out that there has to be an energy loss due to wires heating up and batteries not being 100% efficient. He overcomes these problems with some very clever circuitry which is covered in the following section. However, it is not at all certain that this is actually the case as experimentation indicates that it is possible for this kind of battery switching to maintain the battery charge levels far beyond the expected.

Here is an untested suggestion for how it might be possible to produce a portable, self-powered powerful light. There are many possible variations on this, and the following description is just intended as an indication of how a three battery switching system might be constructed. If you are not familiar with simple electronics, then I suggest that you study the basic electronics tutorial of chapter 12.

Battery charging can be accomplished in various different ways. Obviously, the more the electrical loading can be reduced, the lesser the need for recharging. Two methods for doing this involve passing the same electrical current repeatedly through the load, as shown here:


A Three Battery Switching System


The switching for this arrangement can be implemented in various different ways, but essentially, in Stage 1, batteries ‘B1’ and ‘B2’ provide twice the voltage of batteries ‘B3 ‘ and ‘B4’, causing current to flow through the load ‘L’ and into batteries ‘B3’ and ‘B4’, driven by the voltage difference which is normally, the same as the voltage of any one of the batteries on its own. Each of the batteries ‘B3’ and ‘B4’ receive only half of the current supplied by batteries ‘B1’ and ‘B2’, and so, there is, not surprisingly, an energy loss. However, for half of the time, batteries ‘B3’ and ‘B4’ are receiving charging current instead of supplying current to the load.

In Stage 2, the batteries are swapped around and the process repeated with batteries ‘B3’ and ‘B4’ supplying current to the load and batteries ‘B1’ and ‘B2’. Tests have shown that with this arrangement, the load ‘L’ can be powered for longer than if all four batteries were connected in parallel and used to supply the load directly. With this system, each battery receives half of the load current for half of the time.

An alternative method which uses the same principle, but three batteries instead of four, and where each battery receives all of the load current for one third of the time, is like this:


A Three Battery Switching System

Here, the batteries are switched around sequentially, with two of them in series causing current flow through the load ‘L’ and into the third battery. There is, of course, an overall energy loss, and so, additional energy from an external source needs to introduced to keep the load powered continuously. However, as with the four-battery system, the load ‘L’ can be kept powered longer by the batteries arranged like this than would occur if all three batteries were connected in parallel and used to power the load directly.

As before, the switching for a system of this kind can be implemented in various different ways. For long-term reliability, solid-state switching is preferred, and as NPN transistors are low-cost and readily available, they are shown here in one of the preferred configurations:

As each inter-battery connection is different for each of the three stages of operation of this circuit, it is necessary to have four switches for each stage. In order to establish the necessary details for connection of the transistors, as this circuit does not have the normal positive and negative rails, the (nominal) current flow directions need to be examined. These are shown here:


A Three Battery Switching System

Obviously, the current flows from the higher series-connected voltage to the lower single battery voltage. The twelve virtual switches are numbered from ‘S1’ to ‘S12’ respectively, and if each represents an NPN transistor, then we also need to ensure that the current flow direction is correct for the transistor and to identify a higher voltage point which can be used to feed current into the base of each transistor. These details are listed here:


The suggested switching arrangement therefore, looks like this:

suggested switching arrangement therefore

While the above diagram shows each stage with permanently connected base resistors, that is, of course, only to display the conceptual arrangement. Each resistor is passed through an opto-isolator and each set of four opto-isolators are driven by one of three separate outputs of equal duration. One possible arrangement for this could be as indicated below.

The CD4022 Divide-by-Eight chip can be arranged to divide by three rather than eight, by connecting its pin 7 to pin 15. The physical chip connections are:


The CD4022 Divide-by-Eight chip
The chip needs a clock signal in order to function. There are many different ways of generating a clock signal, and the one shown here is very cheap, simple and has adjustable frequency and adjustable Mark/Space ratio, although, as the signal is to be used to trigger the action of a Divide-By-Three chip, there is no need for this clock signal to have a 50% Mark/Space ratio. 

Note:
----------------------------
Free Energy Generator
✰* Revealed At Last: Ancient Invention Generates Energy-On-Demand

✔ Nikola Tesla’s method of magnifying electric power by neutralizing the magnetic counter-forces in an electric generator

Generates Energy-On-DemandEasy Power Plan Will Change Our World Forever

✔ Currents are 180 out of phase with each other, Lenz's law naturally is broken
✔ Principle of Resonance to achieve Overunity
---------------------------

The chip supply current is so tiny, that it really does not matter what the Mark/Space ratio is:

The chip supply current is so tiny

Using this circuit as the clock signal, the opto-isolator circuit could be:

opto-isolator circuit could

There are various opto-isolators available and while the rather expensive high-speed varieties are tempting, since we have to provide three sets of four, the ISQ-74 quad chip seems very suitable for this application although it is slower:

the ISQ-74 quad chip seems

The overall circuit for the opto switching is then:

overall circuit for the opto switching








The output transistors are expected to switch 1 amp and so the TIP132 NPN and matching TIP137 transistors have been selected. These are cheap, Darlington transistors with current gains in excess of 1000 which means that the base current requirements are about 1 milliamp, which suggests that the base transistors could be 8.2K for a 12V system. These transistors can switch 12A at up to 100V and have a power dissipation of 70 watts, indicating that they will be running so far below their capability that they should run cool.

With this kind of circuit, it is desirable to have a fairly large current flow (relative to the battery capacity) in order to give a marked difference between the discharging and charging cycles for each battery.

Using a 104 mm x 50 mm board size which will slot directly into a standard plastic slotted-side box, a stripboard layout (where the red circles indicate a break in the copper strip on the underside of the board) for the transistor switching section might be:


transistor switching section might



Each base resistor has an output link (O1b through O12b) which is connected through it’s opto-isolator to the destination shown in the “Base” column in the table. Each set of three NPN transistors and one PNP transistor are switched together via a single ISQ-74 quad opto isolator chip. Each of the three ISQ-74 chips is powered in turn by one of the outputs from the CD4022 Divide-by-Three connected chip, which driven by the CD40106B hex Schmitt inverter chip wired as a clock as shown above. 

It is expected that a suitable clocking frequency would be about 700 Hz. A possible layout for the clock, Divide-by-Three and twelve opto-isolators on a 104 mm x 50 mm strip board, is shown here:


Divide-by-Three and twelve opto-isolators


The timing and switching circuits form part of the load which is being switched. However, if we assume that there will be a power loss when running this system, then we should consider the very clever designs of Carlos Benitez in 1915.


✰* Revealed At Last: Ancient Invention Generates Energy-On-Demand

✔ Nikola Tesla’s method of magnifying electric power by neutralizing the magnetic counter-forces in an electric generator

Generates Energy-On-DemandEasy Power Plan Will Change Our World Forever

✔ Currents are 180 out of phase with each other, Lenz's law naturally is broken
✔ Principle of Resonance to achieve Overunity

A Three Battery Switching System - Free Energy Generator A Three Battery Switching System - Free Energy Generator Reviewed by Re-programming Life on 1:41 AM Rating: 5

No comments:

Powered by Blogger.